1024 028

2002

DISTRIBUTION STATEMENT A
Approved for Public Release -
Distribution Unlimited

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188). 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be award that notwithstanding any other provision of law, no person shalt be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB contro! number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE . , " |3. DATES COVERED (From - To)
15-MAY-2002 Book Chapter
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Efficient Storage Of Large Volume Spatial And Temporal Point-Data In An
Object-Oriented Database Sb. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
DAVID V. OLIVIER ROY VICTOR LADNER FRANK P. McCREEDY RUTH ANNE WILSON
' 0602435N & 63782N

Se. TASK NUMBER

5f. WORK UNIT NUMBER
74-6731-02,747960-D1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. REPORTING ORGANIZATION
Naval Research Laboratory REPORT NUMBER
Marine Geoscience Division
Stennis Space Center, MS 38529-5004 NRL/BC/7440--02-1001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) - 10. SPONSOR/MONITOR'S ACRONYM(S)
NRL ONR . NRL & ONR
Code 7440.2 800 N. Quincy Steet 11. SPONSOR/MONITOR'S REPORT
SSC MS 3952 Arlington, VA 22217 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release,distribution is unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Data mining applications must deal with large volumes of data. In particular, Spatio-Temporal Information Systems must efficiently store and access potentially very large
quantities of spatial and temporal data. Therefore, storing the data in an efficient and useful way is of great importance. Binary Large Objects (BLOBs) are found in many database
systems and have been extensively used in typical database applications for the storage of large volume data. In this chapter, we describe the extension of basic BLOBs for
specialized use with spatial and temporal data. These new repositories, Spatial BLOBs and Temporal BLOBs, add additional functionality for the query and retrieval of the
repository's contents in a semantically meaningful, object-oriented form. The repositories are designed as flexible frameworks, decoupled from the particular binary format of their
intemal contents. Custom plug-ins allow the frameworks to be extended to use a particular binary format that is most appropriate for a given data type.

15. SUBJECT TERMS

spatial data, temporal data, data storage, binary large objects, BLOBs

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ~ | 18. NUMBER OF 19a NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT ¢. THIS PAGE

19b. TELEPHONE NUMBER (/nclude area code)
unclassified unclassified unclassified Unlimited 19 228-688-5920

Standard Form 298 (Rev. 8/98)

Chapter 3

Efficient Storage of Large Volume Spatial and
Temporal Point-Data in an Object-Oriented Database

David Olivier, Roy Ladner, Frank McCreedy, Ruth Wilson
Naval Research Laboratory

Key words:

Abstract:

1.

spatial data, temporal data, data storage, binary large objects, BLOBs

Data mining applications must deal with large volumes of data. In particular,
Spatio-Temporal Information Systems must efficiently store and access
potentially very large quantities of spatial and temporal data. Therefore,
storing the data in an efficient and useful way is of great importance. Binary
Large Objects (BLOBs) are found in many database systems and have been
extensively used in typical database applications for the storage of large
volume data. In this chapter, we describe the extension of basic BLOBs for
specialized use with spatial and temporal data. These new repositories, Spatial
BLOBs and Temporal BLOBs, add additional functionality for the query and
retrieval of the repository’s contents in a semantically meaningful, object-
oriented form. The repositories are designed as flexible frameworks,
decoupled from the particular binary format of their internal contents. Custom
plug-ins allow the frameworks to be extended to use a particular binary format
that is most appropriate for a given data type. '

INTRODUCTION

To describe the dynamic state of the environment and extrapolate
meaningful knowledge regarding it, Spatio-Temporal Information Systems
must store and access large volumes of data. There are three principal
reasons for this.

1. The first is that the amount of data required to capture the state of the
environment at a given moment in time is large. For example,
meteorological data sets describe the state of atmosphere by describing
its state at a large number of discrete points. A typical data set might
describe the value of some parameter at tens or hundreds of thousands of

1

2 Chapter 3

points. In turn, many data sets for many different parameters may be

required to sufficiently describe the state of the atmosphere at a single

moment.

The second is that the amount of data may grow rapidly. While all

geospatial features change over time, this change is often sufficiently

small for a given duration of interest that it can be treated as static, and,
therefore, only a single “current” set of conditions is stored. With
dynamic data, however, we are typically not only interested in conditions
at a single, current moment but at a range of times extending back into

the past and possibly forward into the future (predicted conditions). As a

result we must store many consecutive snapshots of the environment.

3. The third reason has less to do with what the data is describing and more
to do with how the data is to be used. If the data is to be used as input for
data mining, the data sets must necessarily be large to extract meaningful
results.

The expected quantities of spatio-temporal data require that we adopt
compact mechanisms for their storage. However, simply storing large
quantities of data in a small amount of space does not guarantee that we have
met our objectives. The data must be usable and, therefore, easily
accessible. We can define several criteria for usability:

— The ability to query for data by semantically meaningful criteria: In the
case of spatio-temporal data this means querying for data by spatial or
temporal attributes.

— The ability to retrieve data in a semantically meaningful form: This
means that the data retrieved must be structured in a meaningful way
easily usable by the STIS.

— Efficiency: Since the STIS must access large quantities of data the
transactions must occur quickly.

These criteria guarantee that the system will be able to effectively use the
data it stores. The Spatial and Temporal BLOBs described here were
developed for the storage of meteorological, oceanographic, and
observational data and were designed with these criteria in mind. They were
developed for use in the Geospatial Information Database (GIDB™) System,
an STIS developed by the Digital Mapping, Charting and Geodesy Analysis
Program (DMAP) of the Naval Research Laboratory [NRL 2002].

o

2. THE GIDB SYSTEM

The GIDB System is a distributed geospatial mapping application
composed of three principal components: a client user-interface for
requesting and viewing data products, a central data portal which coordinates

3. Efficient Storage of Large Volume Spatial and Temporal Point- 3
Data in an Object-Oriented Database

communication between the client and various databases, and an object-
oriented database system for the persistent storage of environmental data.
The goal of the GIDB System is to assimilate a wide variety of data types
from disparate sources into a single data model and view, thereby giving the
user a powerful data analysis and planning tool.

The GIDB client application allows the user to access, query, and
visualize data. Data may be searched by area-of-interest. Heterogeneous
data sets may be viewed in a unified environment. The principal view is a
two-dimensional, GIS-like rendering, but data may also be viewed in three
dimensions. Additional functionality allows for the querying and viewing of
spatially indexed multimedia data.

The GIDB client does not communicate directly with any databases but,
instead, makes requests and receives products via the GIDB portal. The
portal allows the client to connect not only to the GIDB database but, also, to
a wide variety of other databases, both local and remote. All
communications between the client and portal occur in a common data
transfer format. The portal, however, can communicate with external data
sources in their native format. The portal can be extended to communicate
with new types of data sources by adding new drivers that handle
translations between GIDB’s data transfer format and that of the new data
source. This extensibility allows a wide variety of data from other sources to
be viewed together with data from the GIDB database.

The GIDB database component defines a generic data model facilitating
the internal representation of a wide variety of geospatial information. A
hierarchic data model organizes data according to scale, thematic layers, and
feature classification types. It is implemented using the Java, open source,
object-oriented database management system, Ozone [Ozone 2002]. The
Spatial and Temporal BLOBs described here have been developed for use
within Ozone.

3. THE PROBLEM DOMAIN

Let us examine in more detail exactly what sort of data we intend to store
in the Spatial and Temporal BLOBs. Spatio-temporal data sets, in general,
might describe entities of a wide variety of shapes (points, lines, polygons,
etc.) However, Spatial and Temporal BLOBs were developed specifically to
store meteorological, oceanographic, and observational data, and these data
sets typically only describe conditions at specific points within the
atmosphere or ocean. Therefore, we can make a simplifying assumption:
Spatial and Temporal BLOBs will only model point data. This allows us to

4 Chapter 3

handle the vast majority of data we are interested in but reduces the

complexity of the solution. ,

Spatial and Temporal BLOBs were each designed to handle a specific
subset of the anticipated data. Spatial BLOBs were developed with the
specific aim of storing typical meteorological and oceanographic data sets
and survey data. These data sets describe multiple points over some area.
They fall into two main subcategories:

1. Gridded: Most frequently this type of data is output from a
meteorological or oceanographic model. However, it could be any
spatial point data where the points are arranged in a horizontal grid.

2. Irregular: The points have no predictable ordering. Typically, this might
be observations from multiple weather stations at a given time or
samplings from a survey.

Temporal BLOBs were developed to address a different sort of data,

specifically observations at a single point over a span of time. One could be

used, for example, for storing a series of readings from a weather station or
buoy. As an analog to gridded and irregular spatial data, the temporal
observations might be regularly or irregularly spaced in time.

Spatial and Temporal BLOBs both describe multiple space-time points,
but each holds some dimensions constant while varying for others. A Spatial
BLOB describes points at a fixed time but varying positions (in a horizontal
plane). Temporal BLOBs describe a point at a fixed position but varying
times. Beyond this, however, a wide variety of data configurations exist that
we will want to handle (individual data points may have a single attribute or
many; all points in a set may have the same or different attributes; the
attributes may be of many different types, etc.)

4. AN OBJECT-ORIENTED SOLUTION

Before discussing our solution in more detail, we will examine the
particular issues related to implementing a solution in an object-oriented
context, both the benefits and drawbacks. Using an object-oriented data
model allows for a semantically rich representation of the data coupled with
convenient functionality. Using an object-oriented database allows for
seamless data storage and retrieval without any need to explicitly marshal
and unmarshal the data to and from a tabular or binary format. However, the
volume of dynamic spatio-temporal data is often much larger than that of
static spatial data and a straightforward extension of the existing object-
model to incorporate spatio-temporal data incurs prohibitive performance
costs. The goal of this work is to develop a solution for the storage of

3. .Eﬁ‘icient Storage of Large Volume Spatial and Temporal Point- 5
Data in an Object-Oriented Database

spatio-temporal data that resolves these issues while seamlessly integrating

into the existing object-oriented system. .

On the surface it would seem that there is no reason why GIDB’s existing
object model cannot be extended to describe large point-data sets. To do this
one would simply represent each point in the set as a point object. Suppose
a data set describes rain rates over some area. Model each sample as a point
object with an associated position and rain rate value. This approach is
straightforward, integrating nicely with the existing system, and it would be
viable for small data sets. However, when applied to realistic volumes of
data it quickly becomes untenable. We will refer to it as the naive object
approach and will examine its shortcomings in more detail.

Applying the naive object approach to high volumes of point-data results
in two performance problems:

1. Storage: A persistent object representation of a point takes significantly
more disk space than a straight binary representation of the same data.
For a large number of points this problem becomes critical.

2. Indexing: The existing GIDB system uses an R*-tree to spatially index
features [Owen 1997]. The implementation in use is effective for
indexing a moderate number (tens of thousands) of objects. However, as
the number of points in the index grows, the overall query time increases.
Eventually, the index cannot handle the number of points and fails (on a
PC with 500 megabytes of RAM, the maximum was between four-
hundred and five-hundred thousand entries). Typical spatio-temporal
data sets could quickly overwhelm such an index.

Of course, many applications do exist which store large point-data sets
compactly. These store the data in binary files. Each file typically describes
a single data set. It contains many individual byte records describing the
relevant conditions at a point within the data set. In general, a strictly binary
representation of data is significantly smaller than that same data stored in
object form. '

While the binary file approach is not, in itself, desirable for use in the
GIDB context (we lose the advantages of seamless persistence of data), it
points us in the direction we want to go. The solutions we will describe here
are object-binary hybrids, repository objects that internally stores the data in
binary format but provide a purely object-oriented interface to the rest of the
system. These solutions are developed on the foundation of Binary Large
Objects (BLOBs) which are found in many database systems but add
functionality for spatially and temporally querying for the data and
translating it from binary to object form.

6 Chapter 3

5. REQUIREMENTS

Before describing Spatial and Temporal BLOBs in detail we will
enumerate the requirements motivating their design. These requirements fall
into three categories: ‘

1. Functionality: The solution must seamlessly integrate with the
existing object-oriented system, allowing for the data to be queried
by spatial or temporal criteria (area-of-interest or duration-of-
interest), and returned in a semantically meaningful object form.

2. Performance: The solution must optimize for three criteria:

Storage size: The size of the stored data is very important. We
will seek to minimize use of disk space.

Indexing: This is the criterion that decisively ruled out the naive
object approach. We must use a solution that will not populate
the existing indexing scheme with hundreds of thousands of
objects.

Speed: Methods to optimize for other performance criteria
cannot be used at the expense of excessive data access times. In
an interactive application reasonable response times are essential

, to usability. ‘

3. Flexibility: The solution must work for a wide variety of spatio-

temporal data types.

6. TOWARDS A SOLUTION

The design of the Spatial and Temporal BLOBs is based on several key
design decisions that allow for the successful resolution of our requirements.
Wrap the data set as a single object. Instead of defining each data point
as an object in our model, we will develop a repository object that wraps all
of the contents of a data set into a single object. By changing the
correspondence from
data point — single object feature
to
data set — single object feature
we resolve the problem of overwhelming the index. The primary
database index has a single object added, not hundreds of thousands, so the
effect on the performance of the system as a whole is negligible (although
the repository must still internally index the data).
Within the repository, represent the data in binary format. By wrapping
a data set into a single object we have gained complete freedom in how this

3. Efficient Storage of Large Volume Spatial and Temporal Point- 7
Data in an Object-Oriented Database

data is internally represented. By storing it in binary we obtain a significant
reduction in storage size. '

Spatially .or temporally index the contents of the repository. The
repository will receive requests for data that matches a given area-of-interest
or duration-of-interest. To efficiently retrieve only the relevant data the
repository must have an internal spatial or temporal index of its contents.

Provide conversion functionality. ~We require that the repository
seamlessly integrates with the existing object-oriented system. As a
consequence, it cannot respond to requests for data by returning it in binary
format. Therefore, the repository must have functionality to convert from
the data’s internal binary representation to an object representation suitable
for return to the larger system.

Define an abstract framework. Deciding to internally represent the data
in binary form is an excellent way to reduce storage size, but it leaves us
with the question, “What binary format should be used?” Different formats
are best suited for different types of data. For example, in the case of spatial
data, a format that is well suited for gridded data may not work with
irregular data. Typically file formats for gridded data do not store the
position of each point in the corresponding record. Instead they store header
information describing the grid that allows the position of each point to be
computed. On the other hand, file formats which are intended to describe
irregular data must store the position of each point since there is no way of
inferring it. While the format for the storage of irregular data is sufficiently
general to describe gridded data, the storage cost of storing position
information for each point is unnecessary. Since optimized storage size is a
central priority and much of the data we will handle is gridded, this is not a
cost we are willing to incur. Our decision is to leave the format unspecified.
Instead the Spatial and Temporal BLOBs are abstract frameworks that can
be tailored to allow for different internal binary representations best suited to
the data type they will contain.

7. THE DESIGN

We have outlined the general design decisions that our solution will
implement. Let us see how these decisions will translate into a high level
design'.

! The Spatial and Temporal BLOBs have essentially the same design. In this and the
following section, for convenience, we will refer to them collectively as the Spatio-
Temporal BLOB.

8 Chapter 3

Spatio-Temporal BLOB
build()
read()
write()
available()

getMbr()

countByAQI()
pointsByAOI()
1 1 1
Data FormatKey Index
write() setSpatialBLOB() build{)
read() getEmptylndex() countByAOI/DOI()
size() getFirstByteOfiset() findByAOI/DOI()
wiite() getNextByteOfiset()
read() descriptorToPoint(}
size()

1

Metadata

Figure 1. An object decomposition of the Spatio-Temporal BLOB

The above diagram shows that the Spatio-Temporal BLOB is actually
composed of four distinct subcomponents. We will describe the specific
roles of each of these components in accomplishing the overall purpose of
the Spatio-Temporal BLOB.

Data: Of course, the principal responsibility of the repository is to hold
data. The Data component borrows functionality directly from standard
BLOBs as implemented in Ozone. Binary data is stored in a series of
moderate sized pages, each implemented as a byte array. Data is stored and
retrieved according to byte offset. Each data point is represented as a binary
record within the data.

Format Key: The Format Key’s primary role is to translate individual
byte records into object representations of that same data. When the Spatio-
Temporal BLOB fulfills requests for data by area-of-interest or duration-of-
interest the Format Key is given the offsets of relevant byte records. It reads
the record, interprets it, and constructs a corresponding point object. Its
more general role is to capture all information about a specific internal data
format?.

Index: The Index maintains a mapping between the spatial or temporal
position of a data point and its byte offset within the Data. When the Spatio-

% This includes knowledge concerning the posiﬁons of the records such as the offset of the
first record, the position of one record given the position of the previous, etc. This
functionality is used for indexing the data. We mention it but will not discuss it in detail.

3. Efficient Storage of Large Volume Spatial and Temporal Point- 9
Data in an Object-Oriented Database

Temporal BLOB receives a request for data according to an area-of-interest
or duration-of-interest it is the Index’s responsibility to determine the offset
of all matching records.

Metadata: We have already identified the principal components of the
Spatio-Temporal BLOB. However, to make our picture complete we must
add one more. Many binary formats for meteorological data are not fully
self-descriptive and, therefore, require additional metadata to fully interpret
their contents (we will address this issue in more detail when we discuss the
Spatio-Temporal BLOB as an abstract framework).

The Spatio-Temporal BLOB, itself, performs an orchestrating role,
forwarding requests to the subcomponents and returning results to the client.
Let us look at how it works together with its subcomponents to fulfill a
request for data: '

X

. client { . STBLOB ‘ ‘ S ndex J | : FormalKey | ‘ ; Meladata J

VectorFealure \
PointsByAOIDO! faoiidoiy !
i point object
{indByAOI/DO! {aoit/doi) !

descriptorToPoint (;yLLieccrdDescﬁp(or)

read (in,\&!)

get relevant metadata

ne Veclongerekallribu(s»)

repeat for each
record

Figure 2. The sequence of steps to retrieve data from a Spatio-Temporal BLOB by area-of-
interest or duration-of-interest

Typical data retrievals have the following steps:

1. The client requests the points contained within an area-of-interest or
duration-of-interest from the Spatio-Temporal BLOB.

2. The Spatio-Temporal BLOB forwards the request to the index that
returns an array of record descriptors, each specifying a record’s byte
offset and the spatial or temporal position of the point it describes.

10 ‘ Chapter 3

3. The Spatio-Temporal BLOB iterates through the descriptors, passing
them in turn to the Format Key that reads the appropriate record from the
data and constructs a point object embodying the information.

4. The Spatio-Temporal BLOB returns the resulting array of points.

8. A FLEXIBLE FRAMEWORK

We have identified the fundamental subcomponents of the Spatio-
Temporal BLOB, but Spatio-Temporal BLOB framework does not actually
define concrete implementations for all of them. Instead, for certain
subcomponents (the Index and Format Key), the Spatio-Temporal BLOB
framework only specifies an interface that indicates what functionality any
actual implementation must provide. Different implementations will be used
depending on the binary format of the Spatio-Temporal BLOB’s contents.

Suppose, for example, that we wish to allow the Spatial BLOB to store
gridded meteorological data. To accomplish this we extend the framework
to handle data stored in the GRIB format, a format commonly used for the
storage and transfer of gridded meteorological data [WMO 2002]. An
implementation of the Format Key must be provided which encapsulates all
of the knowledge of how to interpret the GRIB data format. When the
Spatial BLOB is built and populated with GRIB data this key is plugged in,
giving the Spatial BLOB the knowledge of how to access and translate its
contents. Likewise, an implementation of the Index interface should be
chosen which is well suited to GRIB data (choosing the best index is
generally dependent on which has the best performance with that type of
data). Also, the Spatial BLOB must be initialized with appropriate Metadata
attributes describing the specific data set which the Spatial BLOB contains.
The particular set of attributes depends on the particular format being used.
Required metadata for describing GRIB data includes, among other things,
information about the structure of the grid for that data set. If one GRIB
BLOB contains data describing a data set with a grid of dimensions 100 x
500 with intervals of 20 kilometers, the Metadata specifies this information.
A different GRIB BLOB containing a different data set with different
dimensions would have metadata specifying its particular dimensions. The
same holds true for Temporal Blobs. An appropriate Temporal Format Key
will be plugged in depending on the format of the temporal data. The
appropriate index implementation would vary depending on whether the
contents described events at evenly spaced or irregularly spaced times.
Again, the appropriate set of metadata parameters depends on the type of
data we are dealing with. We will look at each subcomponent in turn to see
if and how it varies.

3. .Eﬂicient Storage of Large Volume Spatial and Temporal Point- 11
Data in an Object-Oriented Database

Data: The implementation of Data remains constant, regardless of the
data type contained by the Spatio-Temporal BLOB. The reason is simple:
all of the data we are dealing with, regardless of its particular format, is
binary. The Data component is simply a storage mechanism for binary data,
and the semantics of the data it contains is irrelevant.

Format Key: Clearly the process of interpreting the data varies from
format to format. We will provide different implementations of the Format
Key for each format we handle. When the Spatio-Temporal BLOB is built it
is initialized with a particular Format Key implementation that is appropriate
for its contents. In addition to encapsulating knowledge of the structure of
the data format, the key also specifies which implementation of the Index
interface will be used for that format. The key does this by implementing a
factory method getEmptyIndex () which returns the appropriate index
implementation. When the Spatio-Temporal BLOB is being built, it calls
this method and receives the appropriate type of index without ever knowing
which implementation it is actually using.

Index: There are a wide variety of well-known indexing schemes
available. GIDB, for example, uses an R*-tree as its primary index. Any
implementation can be used as long as it provides the functionality specified
by the Index interface. However, not all schemes are ideally suited to all
data types. Again, we consider the differences between gridded and
irregular spatial data. While many indexing schemes are sufficiently general
to handle all of the data configurations we anticipate, this generality is
expensive. An R*-tree may be suitable for irregularly spaced data points,
but simpler and more efficient alternatives exist for gridded data. For

gridded data we use a “Computational” implementation of the index that is.

not a typical index in the sense of having entries added and maintained in a
searchable structure. It simply uses a straightforward linear equation to
compute on-the-fly what points in the grid match an area-of-interest and
what the byte indices of the corresponding records are. Since no entries are
stored no storage space is required. For large, gridded data sets this results
in enormous savings. Similarly, for regular data Temporal BLOBs use a
Temporal Computational Index that computes timestamps with a simple
linear calculation using the start time and regular interval between events.?

Metadata: The metadata attributes that fully qualify a data set of a given
type vary according to that type. When the Spatio-Temporal BLOB is built
it is initialized with a metadata appropriate for its contents.

3 The best means of indexing irregular temporal data within the GIDB System is still being
evaluated. A variation of an R*-tree which treats time in a similar manner to other
dimensions is being considered.

12' ' Chapter 3

Since format specific components must be plugged in before meaningful
data can be retrieved, the building of the Spatio-Temporal BLOB is a multi-
step process. The details are as follows:

welent S
.

.
l new STBLOB()

write (byte[], int)

more
precisely,
/I_J concrete
build (FormatKey) subclasses of
FormatKey
and Index

new

setSTBLOB (STBLOB)

getEmptylndex (} :H

build () 1]

I |

Figure 3. The sequence of steps to build a Spatio-Temporal BLOB

Construct an empty Spatio-Temporal BLOB.

2. Write the binary data to the Spatio-Temporal BLOB (typically this data is
written as is, in its original file format; when appropriate it may be pre-
processed to convert it into some more suitable from).

3. An appropriate subclass of Format Key is constructed with appropriate
metadata for the specific data set contained in the Spatio-Temporal
BLOB.

4. The Spatio-Temporal BLOB is built by initializing it with the key. This
is the step that fully defines the Spatio-Temporal BLLOB, providing it
with the "knowledge" of the semantics of its contents. This step involves
sub-steps:

a) The Spatio-Temporal BLOB passes itself as a reference to the key.

b) The Spatio-Temporal BLOB retrieves an empty index of the

appropriate implementation from the Format Key and then populates
the index.

[

3. Eﬂicient Storage of Large Volume Spatial and Temporal Point- 13
Data in an Object-Oriented Database '

9. SAMPLE APPLICATIONS

To understand the frameworks better we will look at how they are
applied to actual specific formats. First, we will look at the Spatial BLOB
extension for the GRIB format.* Each GRIB file describes the state of the
atmosphere for some parameter (we will only be dealing with files which
describe a single parameter although GRIB may handle multiple parameters
per file). It contains records specifying the values for that parameter at a
series of gridded points over that area. Each GRIB record is a single four-
byte real number representing the value for the given parameter at the
corresponding point. The points are arranged in row-prime ordering with x
and y increasing in the positive direction.

The principal task required in extending the Spatial BLOB framework to
the GRIB format is to define a GRIB Key implementation of the Format Key
interface. This key will do four things:

1. Specify the set of required Metadata attributes. These will be taken
as arguments to the GRIB Key constructor. The specific attributes
required for GRIB data are the parameter being modeled
(temperature, precipitation, etc.) and information about the grid
including the number of rows and columns, the distance between
points, the mapping projection used, and any additional values
needed to describe a specific projection.

2. Specify which implementation of the Index interface will be used.
Since GRIB data is gridded, the Computational Index is an
appropriate choice. The GRIB Key’s getEmptyIndex () method
constructs and returns a new Computational Index.

3. Provide functionality to convert the byte records to point objects.
Because the GRIB format is very simple, implementing this
functionality is straightforward. It simply accesses the record at the
specified offset, reads in the value, and builds a point feature object
with the associated latitude and longitude and a single attribute
consisting of the attribute name and value.

4. Provide auxiliary functionality describing the positions of the
records. Since the first record begins at zero and all records are four
bytes, providing this information is simple.

The implementation of the GRIB Key is straightforward, allowing for an
efficient and easy application of the Spatial BLOB framework. The GRIB

4 Actually, the GRIB file format, itself, is relatively complex. It includes a large amount of
header metadata and uses compression. We will not actually be dealing with GRIB but
with an unpacked version of GRIB. For convenience’s sake, however, we will refer to this
as GRIB data.

14 Chapter 3

Key has been implemented and deployed for regular use in the GIDB
System. In the next section we will evaluate its success in meeting our
_ requirements.

We will briefly sketch a similar example for the Temporal BLOB.
Suppose we have an observation station that samples an atmospheric
parameter such as temperature at regular intervals. To allow the Temporal
BLOB to store this data we will define a very simple binary temporal data
format. This format will store the value of the parameter for each point in
time as a four-byte float, just like the GRIB example does for each point in
space. Since the format is describing events at regular time intervals, we can
handle this in the same way our previous example handled spatial grids.
Instead of storing a specific time stamp with each record, we store metadata
describing the time intervals. The complete set of metadata parameters
necessary to describe the data is:

1. The parameter being described (i.e. “Temperature”).
2. The units (i.e. “Celsius”).

3. The time of the first observation.

4. The interval of time between observations.

To be able to store data of this format in a Temporal BLOB we must
define an appropriate key, which we will call a Simple Float Key. Its
functionality is similar to that of the GRIB Key. It specifies the required
metadata attributes, determining which index implementation is used, and
provides functionality to extract the appropriate data and return it in the
desired form.

10. EVALUATION

Now that we have described the design and behavior of our solution in
detail, we will see how it compares to the criteria specified in our
requirements. For a test, we will evaluate the quantitative performance of
the Spatial BLOB, measuring its behavior with a typical GRIB data set. The
test data set has the following characteristics:

*» The data set is output from the Coupled Ocean/Atmosphere
Mesoscale Prediction System (COAMPS) meteorological model’s
Continental U.S. run [COAMPS 2001]. This particular output data
set describes temperature.

» The data set is a grid with 301 columns and 131 rows (39,431 points
total). The bounding box of the data set is: 126W, 24N, 66W, 50N.

The following tests compare the performance of the Spatial BLOB
containing this data as opposed to the same data stored using the previously
described naive object approach (each point modeled as an object).

3. Efficient Storage of Large Volume Spatial and Temporal Point- 15
Data in an Object-Oriented Database

The first criterion we will examine is the storage size of the data with the
different methods. The following table shows the sizes of the data stored in

its original flat file format, in the Spatial BLOB, and as point objects:

Table 1. Storage size of the data in bytes

Original flat file Spatial BLOB Point objects

54,302 (53.0 KB) 66,652 (65.0 KB) 4,712,991 (4.5 MB)

The size of the Spatial BLOB is comparable to that of the original GRIB
files and is many times smaller than the point object representation. The
reasons for this are twofold:
1. The primary reason, as previously mentioned, is that the binary

representation of the data is more compact than the object representation.
2. The Spatial BLOB gains an additional advantage in storage size by its

use of the Computational Index for gridded data. Since this “index”

computes the offsets of records on the fly, no storage space is required.®
Clearly, the Spatial BLOB provides a very large improvement in storage size
over the naive object approach. The concern is that this improvement is
gained at the expense of excessive access times since data must be converted
on the fly from binary to object form. Testing reveals that this is, in fact, not
the case.

Table 2. Time to retrieve objects in milliseconds (various areas-of-interest)

Query area Spatial BLOB Point Objects
96W, 37N, 95W, 38N (small - 36 points) 140 2,544

126W, 37N, 66W, 38N (wide - 1,806 points) 431 911

96W, 24N, 95W, 50N (tall - 786 points) 80 872

126W, 24N, 66W, 50N (all - 39,341 points) 4,626 107,835

Retrieving data from the Spatial BLOB using the Computational Index
implementation is significantly faster than retrieving point objects using the
database's R*-tree index, thus, more than compensating for the relatively
small amount of time needed to convert the data to object form.

The Spatial BLOB outperforms the naive object solution across the
board.” The binary storage of the data provides a massive reduction in
storage size. The minimal cost that is incurred by the on-the-fly conversion

5 Both GRIB and Ozone compress data. In this case, the Spatial BLOB is slightly larger than
the original GRIB file. Experience with other, non-compressed file formats shows that the
Spatial BLOB is often substantially smaller than the original file.

6 Approximately 4 MB of the naive solution’s size is actual storage of data. The additional
0.5 MB of size is the space needed for the index.

7 In fact one performance benefit of the Spatial BLOB that was not an explicit objective of our
requirements is significantly reduced build times. For the test dataset it took 3,124
milliseconds to build as a Spatial BLOB versus 105,702 milliseconds with the naive object
approach.

16 Chapter 3

of the data is more than offset by the flexible indexing scheme that can
provide benefits in both storage size and access times. Our performance
requirements have been met, and in some cases exceeded (we required that
our solution provide an improvement in storage size without an excessive
sacrifice in access times; our solution provides, at least in some cases, an
improvement in storage size and an improvement in access times).*

The Temporal BLOB is still in its prototype stage and will be fully
incorporated into the GIDB System as the temporal aspects of the system are
extended. Currently, no benchmarking of its behavior is available, but, since
it is fundamentally similar to the Spatial BLOB, its performance is expected
to be comparable.

11. FUTURE DEVELOPMENTS

Spatial and Temporal BLOBs were designed to handle specific, real-
world needs for storage of anticipated data sets. They meet those needs well,
but their uses are specialized. They respectively handle horizontal, two-
dimensional areas at a single time and single points at many times. A natural
next step is to develop a fully generalized, four-dimensional, true Spatio-
Temporal BLOB capable of describing the environment in three spatial
dimensions plus time. This new solution would be able to handle all of the
data sets stored by the two current solutions as well as others that neither of
them can store. For example, currently, to describe the temperatures in the
atmosphere, multiple Spatial BLOBs store multiple data sets describing
stacked, horizontal slices of the atmosphere at various altitudes. To store
temperature variations over time data sets are required for each time as well
as each altitude. This solution reflects the way most atmospheric models
currently output results. However, the division of data into multiple altitudes
and times is arbitrary. These divisions do not allow the data sets to express
relations between points in different sets. The single slice can only express
proximity between points along the horizontal axes but not the vertical or
temporal axes. The proposed integrated Spatio-Temporal BLOB would be
able to represent all of this information in a single data set. Similarly, data in
a Temporal BLOB can express proximity in time but not in any other

8 The benchmarks described above are for the application of the Spatial BLOB framework to
gridded data where the Spatial BLOB’s superiority over the naive object approach is
greatest. This is because the gridded data can be indexed using the Computational Index
implementation, which is fast and requires no storage. Irregular data will require some
other scheme, which will have costs in storage size and/or speed, but these costs are no
greater than that of any other solution. The flexibility of the Spatial BLOB allows for the
choice of the best possible indexing scheme.

3. ‘Eﬁ‘icient Storage of Large Volume Spatial and Temporal Point- 17
Data in an Object-Oriented Database '

direction. Again, the integrated Spatio-Temporal BLOB would be able to
express these relations. As it stands, an application using the multiple,
separate data sets for analysis purposes must reconstruct a unified picture of
the environment in order to capture these relations. A unified Spatio-
Temporal BLOB would explicitly capture this information.

In developing an integrated Spatio-Temporal BLOB the basic
architecture would be nearly identical to that of the existing solutions. The
principal difference would be in the adoption of appropriate binary formats
and indexing schemes for four-dimensional data.

12. CONCLUSION

By resolving the technical difficulties presented by the incorporation of
large volume meteorological data into an object-oriented database, the
Spatial and Temporal BLOB frameworks provide the fast access to
compactly stored, meaningful data required to facilitate the GIDB System’s
use as a planning aid and analysis tool. The Spatial BLOB has been
deployed in the GIDB System and has proved to be an operational success.
The Temporal BLOB holds similar promise.

18 : Chapter 3

D% % o
: Status: Loading Level: 10 m, tau: 0

Figure 4. Data from Spatial and Temporal BLOBs may be used both for visualization and
analysis purposes. This picture shows a view of wind data extracted from a Spatial BLOB
and superimposed on a raster background map.

ACKNOWLEDGEMENTS

We would like to thank the Naval Research Laboratory’s Base Program,
(Program Element 0602435N) and also the Office of Naval Research’s
Generation and Exploitation of the Common Environment (GECE) Program
(Program Element 63782N).

REFERENCES

[COAMPS 2001} Naval Research Laboratory Monterey Marine Meteorology Division.
Coupled Ocean/Atmosphere Mesoscale Prediction System. 19 Feb. 2001
<http://www.nrlmry.navy.mil/projects/coamps/>.

[NRL 2002] Naval Research Laboratory Digital Mapping, Charting and Geodesy Analysis
Program. DMAP Home Page. 4 Mar. 2002 <http://dmap.nlssc.navy.mil/>.

3. Efficient Storage of Large Volume Spatial and Temporal Point- 19
Data in an Object-Oriented Database

[Owen and Voges 1997] James Owen, Erik Voges. A Generic Indexing Mechanism for
Persistent Java. Sept. 1997 <http://people.cs.uct.ac.za/~evoges/web/Paper/p.html>.

[Ozone 2002] Ozone Database Project. ozone — The Open Source Java ODBMS. Apr.
2002 <http://www.ozone-db.org/ozone_main.html>.

[WMO 2002] World Meteorological Organization. Part II, A Guide To The Code Form
FM 92-IX Ext. GRIB, Edition 1. Apr. 2002
<http://www.wmo.ch/web/www/WDM/Guides/Guide-binary-2.html >.

